Algebra and Geometry by L. A. Bokut’, K. A. Zhevlakov, E. N. Kuz’min (auth.), R. V.

By L. A. Bokut’, K. A. Zhevlakov, E. N. Kuz’min (auth.), R. V. Gamkrelidze (eds.)

This quantity includes 5 evaluate articles, 3 within the Al­ gebra half and within the Geometry half, surveying the fields of ring conception, modules, and lattice conception within the former, and people of imperative geometry and differential-geometric equipment within the calculus of diversifications within the latter. The literature coated is basically that released in 1965-1968. v CONTENTS ALGEBRA RING concept L. A. Bokut', ok. A. Zhevlakov, and E. N. Kuz'min § 1. Associative jewelry. . . . . . . . . . . . . . . . . . . . three § 2. Lie Algebras and Their Generalizations. . . . . . . thirteen ~ three. substitute and Jordan earrings. . . . . . . . . . . . . . . . 18 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MODULES A. V. Mikhalev and L. A. Skornyakov § 1. Radicals. . . . . . . . . . . . . . . . . . . fifty nine § 2. Projection, Injection, and so forth. . . . . . . . . . . . . . . . . . . sixty two § three. Homological class of earrings. . . . . . . . . . . . sixty six § four. Quasi-Frobenius jewelry and Their Generalizations. . seventy one § five. a few features of Homological Algebra . . . . . . . . . . seventy five § 6. Endomorphism earrings . . . . . . . . . . . . . . . . . . . . . eighty three § 7. different facets. . . . . . . . . . . . . . . . . . . 87 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ninety one LATTICE idea M. M. Glukhov, 1. V. Stelletskii, and T. S. Fofanova § 1. Boolean Algebras . . . . . . . . . . . . . . . . . . . . . " 111 § 2. identification and Defining kinfolk in Lattices . . . . . . a hundred and twenty § three. Distributive Lattices. . . . . . . . . . . . . . . . . . . . . 122 vii viii CONTENTS § four. Geometrical facets and the comparable Investigations. . . . . . . . . . . . • . . • . . . . . . . . . • one hundred twenty five § five. Homological points. . . . . . . . . . . . . . . . . . . . . . 129 § 6. Lattices of Congruences and of beliefs of a Lattice . . 133 § 7. Lattices of Subsets, of Subalgebras, and so forth. . . . . . . . . 134 § eight. Closure Operators . . . . . . . . . . . . . . . . . . . . . . . 136 § nine. Topological elements. . . . . . . . . . . . . . . . . . . . . . 137 § 10. Partially-Ordered units. . . . . . . . . . . . . . . . . . . . 141 § eleven. different Questions. . . . . . . . . . . . . . . . . . . . . . . . . 146 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 GEOMETRY essential GEOMETRY G. 1. Drinfel'd Preface . . . . . . . . .

Show description

Read or Download Algebra and Geometry PDF

Best algebra & trigonometry books

Algebre Locale, Multiplicites. Cours au College de France, 1957 - 1958

This variation reproduces the 2d corrected printing of the 3rd version of the now vintage notes via Professor Serre, lengthy proven as one of many common introductory texts on neighborhood algebra. Referring for heritage notions to Bourbaki's "Commutative Algebra" (English version Springer-Verlag 1988), the publication focusses at the a number of size theories and theorems on mulitplicities of intersections with the Cartan-Eilenberg functor Tor because the crucial inspiration.

Topics in Algebra, Second Edition

Re-creation contains wide revisions of the cloth on finite teams and Galois idea. New difficulties further all through.

Extra resources for Algebra and Geometry

Example text

1. G. Maurer and L. Purdea, Unele pentru care submodulele sint subinele. Studia Univ. Babes-Bolyai. Ser. math. , 9(2):13-15 (1964). J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras. J. Algebra, 3(2):123-146 (1966). K. O. May, The impossibility of a division algebra of vectors in three dimensional space. Amer. Math. Monthly, 73(3):289-291 (1966). c. J. Maxson, On finite near-rings with identity. Amer. Math. Monthly, 74(10): 1228-1230 (1967). P. J. McCarthy, Note on primary ideal decompositions.

18(2):136-139 (1967). 357. M. S. Huzurbazar, The multiplicative group of a division ring. Math. Student, 32(1-2):7-10 (1964). 358. M. Ikeda, Ober die einstufig nichtkommutativen Ringe. Nagoya Math. , 27(1): 371-379 (1966). 359. E. C. Ingraham, On the existence of inertial subalgebras. Doct. diss. Univ. Ore .. ; Dissert. , 26(8):4690-4691 (1966). 360. E. C. Ingraham, Inertial subalgebras of algebras over commutative rings. Trans. Amer. Math. , 124(1):77-93 (1966). 361. D. B. Ion, Asupra algebrelor Jordan de tip A.

Math. Monthly, 72(8):875-877 (1965). 425. K. Koh, On the set of zero divisors of a topological ring. Canad. Math. , 10(4):595-596 (1967). 426. K. Koh, On properties of rings with a finite number of zero divisors. Math. , 171 (1):79-80 (1967). 427. K. Koh and A. Mewborn, The weak radical of a ring. Proc. Amer. Math. , 18(3):554-559 (1967). 428. K. Koh and A. Mewborn, Prime rings with maximal annihilator and maximal complement right ideals. Proc. Amer. Math. , 16(5):1073-1076 (1965). 429. c. W. Kohls, Properties inherited by ring extensions.

Download PDF sample

Rated 4.58 of 5 – based on 5 votes